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The Lanczos Tau Framework for Time-Delay Systems
Time-delay system
When modelling a system with internal transport phe-
nomena, one often arrives a the following structure:

ẋ(t) = A0x(t) + A1x(t − τ) + Bu(t),
y(t) = Cx(t),

with x(t) ∈ Cn the state, u(t) ∈ Cp the input, y(t) ∈
Cq the output, and τ > 0 the delay.
The transfer function is given by

H(s) = C
(
sIn − A0 − A1e−τ s)−1B.

By introducing ξt : [−τ, 0] → Cn, θ 7→ x(t + θ), we
can rewrite the above as an abstract ODE, with state
variable ξt.
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To compute with this system, however, we will need a
discretization scheme. In practice this is usually colloca-
tion [1]. An alternative is the Lanczos tau method [2].

Lanczos tau framework
We can discretize the infinite-dimensional system by
truncating a series expansion of ξt in a degree graded,
orthonormal basis {φn}N

n=0 of PN , yielding(
ε0

TN−1

)
ξ̇tN =

(
A0ε0 + A1ε−τ

D

)
ξtN +

(
B
0

)
u(t),

yN(t) = Cε0ξtN ,

with evaluation functionals εθξ = ξ(θ), differentiation
operator Dξ(θ) = d

dθξ(θ) and orthogonal projection
TN−1 such that

(TN−1ξ)j = (ξ)j − 〈(ξ)j , φN〉φN , j = 1, . . . , n.

Particularly interesting choices of basis are (appropri-
ately shifted) Legendre polynomials (P∗

n ) and Cheby-
shev polynomials of the first (T ∗

n ) or second (U∗
n) kind.

Properties
Theorem
The Lanczos tau method, corresponds to pseudospec-
tral collocation with the nodes θ0, . . . , θN−1 equal to
the zeroes of φN , and θN = 0.

Lanczos tau methods naturally lead to sparse, self nest-
ing discretizations. We can for instance recover the
infinite-Arnoldi discretization [3], which we now see to
be an ultraspherical method [5].
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In the frequency domain
Proposition
The transfer function of the approximation is given by
HN(s) = C(sIn − A0 − A1rN(s,−τ))−1B, where

rN(s, θ) =
∑N

k=0 φ
(N−k)
N (θ) sk∑N

k=0 φ
(N−k)
N (0) sk

.

For example, the phase for N = 5 and φN = P∗
N :

Theorem
When using a Legendre basis (φn = P∗

n ), the rational
function s 7→ rN(s,−τ) is an (N,N) Padé approximant
of s 7→ e−τ s .

Application: the H2-norm
In robust control and model order reduction, one is in-
terested in the following system norm:

‖H‖H2 = sup
0<α<∞

(
1

2π

∫ ∞

−∞
‖H(α + iβ)‖2

F dβ
)1

2

.

For a stable delay-free system, i.e. A1 = 0, we have

‖H‖H2 =
√
tr(CVCT ), with

A0V + VAT
0 = −BBT .

Idea in [4]: use this method to approximate

‖H‖H2 ≈ ‖HN‖H2.

We note different convergence rates for different dis-
cretizations.
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No proof as of yet, but there are two main hints:

Proposition
The above algebraic Lyapunov equation applied to a
Lanczos tau discretization can be interpreted as a differ-
ential equation describing a bivariate matrix-polynomial.

Definition
The basis {φk}N

k=0 is symmetric iff

φk(−τ − θ) = (−1)kφk(θ), ∀θ ∈ [−τ, 0].

Proposition
For a symmetric basis, we have

|rN(iω,−τ)| = 1 =
∣∣e−τ iω

∣∣, ∀ω ∈ R.

A case of super convergence
Proposition
For A0 = A1 = a < 0, discretized using a symmetric
basis, we have ‖HN‖H2 = ‖H‖H2 for N ≥ 1.
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This result holds, even though the transfer functions do
not match.
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