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The Lanczos Tau Framework for Time-Delay Systems

Time-delay system
When modelling a system with internal transport phe-
nomena, one often arrives a the following structure:

x(t) = Aox(t) + Aix(t — 7) + Bu(t),
y(t) = Cx(t),

with x(t) € C" the state, u(t) € CP the input, y(t) €
C9 the output, and 7 > 0 the delay.
The transfer function is given by

H(s) = C(sly — Ay — Are ™) 'B.
By introducing &; : [-7,0] — C", 0 — x(t + ), we

can rewrite the above as an abstract ODE, with state
variable &;.
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y £o

—T 0

t' — 1 t/

To compute with this system, however, we will need a
discretization scheme. In practice this is usually colloca-
tion [1]. An alternative is the Lanczos tau method [2].

Lanczos tau framework

We can discretize the infinite-dimensional system by
truncating a series expansion of &; in a degree graded,
orthonormal basis {¢,}"_ of Py, yielding

<77fl0_1) étN _ (Aoé?o —;)AlgT) £+ (g) u(t),

yn(t) = Ceoen,

with evaluation functionals £9§ = £(6), differentiation
operator DE(F) = %5(9) and orthogonal projection
Tn—1 such that

(Tn-18); = (€); = {(€))» ¢n) P,

Particularly interesting choices of basis are (appropri-
ately shifted) Legendre polynomials (P?) and Cheby-

n

shev polynomials of the first (T,) or second (U;) kind.

j=1...,n.

Properties

Theorem

The Lanczos tau method, corresponds to pseudospec-
tral collocation with the nodes 0y, ...,0n_1 equal to
the zeroes of ¢y, and Oy = 0.

Lanczos tau methods naturally lead to sparse, self nest-
ing discretizations. We can for instance recover the
infinite-Arnoldi discretization [3], which we now see to
be an ultraspherical method [5].
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In the frequency domain
Proposition

The transfer function of the approximation is given by

Hu(s) = C(sl, — Ay — Airn(s, —7)) ' B, where

N (N—k) 9 k
I’N(S, (9) _ ZZ:O ¢2VN_k)( )Sk.
> k—o®n (0)s

For example, the phase for N =5 and ¢y = Py
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Theorem

When using a Legendre basis (¢, = P}), the rational
function s +— ry(s, —7) is an (N, N) Padé approximant
of s+ e .

Application: the H’-norm
In robust control and model order reduction, one is in-
terested in the following system norm:

1 [ :
sup. (g / HH(a+iﬁ)uid5) |

HH”H2 = sup

For a stable delay-free system, i.e. A; = 0, we have

1H] e = /tr(CVCT),  with

AV + VA] = —BB'.
|dea in [4]: use this method to approximate

1A & [ Hnll -

We note different convergence rates for different dis-
cretizations.
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No proof as of yet, but there are two main hints:

Proposition

The above algebraic Lyapunov equation applied to a
Lanczos tau discretization can be interpreted as a differ-
ential equation describing a bivariate matrix-polynomial.

Definition
The basis {¢k} 1, is symmetric iff

ok(—7 — 0) = (—1) ¢(0), VO €[-7,0].

Proposition

For a symmetric basis, we have

Irv(iw, —7)] =1=|e7™|, VweR.

A case of super convergence
Proposition
For Ay = A1 = a < 0, discretized using a symmetric

basis, we have ||Hy|| 2 = ||H|| 2 for N > 1.
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This result holds, even though the transfer functions do
not match.

--- |H(iw)|
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