KU LEUVEN

The Lanczos Tau Framework for Time-Delay Systems

Time-delay system

When modelling a system with internal transport phenomena, one often arrives a the following structure:

$$\dot{\mathbf{x}}(t) = A_0 \mathbf{x}(t) + A_1 \mathbf{x}(t - \tau) + B \mathbf{u}(t),$$

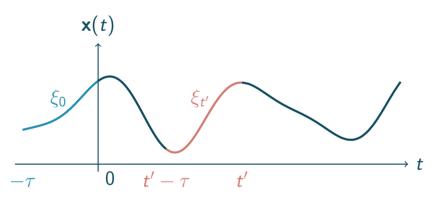
 $\mathbf{y}(t) = C \mathbf{x}(t),$

with $\mathbf{x}(t) \in \mathbb{C}^n$ the state, $\mathbf{u}(t) \in \mathbb{C}^p$ the input, $\mathbf{y}(t) \in$ \mathbb{C}^q the output, and $\tau > 0$ the delay.

The transfer function is given by

$$H(s) = C \left(s I_n - A_0 - A_1 e^{- au s}
ight)^{-1} B_n$$

By introducing $\xi_t : [-\tau, 0] \to \mathbb{C}^n, \theta \mapsto \mathbf{x}(t + \theta)$, we can rewrite the above as an abstract ODE, with state variable ξ_t .



To compute with this system, however, we will need a discretization scheme. In practice this is usually collocation [1]. An alternative is the Lanczos tau method [2].

Lanczos tau framework

We can discretize the infinite-dimensional system by truncating a series expansion of ξ_t in a degree graded, orthonormal basis $\{\phi_n\}_{n=0}^N$ of \mathbb{P}_N , yielding

$$\begin{pmatrix} \varepsilon_0 \\ \mathcal{T}_{N-1} \end{pmatrix} \dot{\xi}_{tN} = \begin{pmatrix} A_0 \varepsilon_0 + A_1 \varepsilon_{-\tau} \\ \mathcal{D} \end{pmatrix} \xi_{tN} + \begin{pmatrix} B \\ \mathbf{0} \end{pmatrix} \mathbf{u}(t),$$
$$\mathbf{y}_N(t) = C \varepsilon_0 \xi_{tN},$$

with evaluation functionals $\varepsilon_{\theta}\xi = \xi(\theta)$, differentiation operator $\mathcal{D}\xi(\theta) = \frac{d}{d\theta}\xi(\theta)$ and orthogonal projection \mathcal{T}_{N-1} such that

$$(\mathcal{T}_{N-1}\xi)_j = (\xi)_j - \langle (\xi)_j, \phi_N \rangle \phi_N, \quad j = 1, \ldots, n.$$

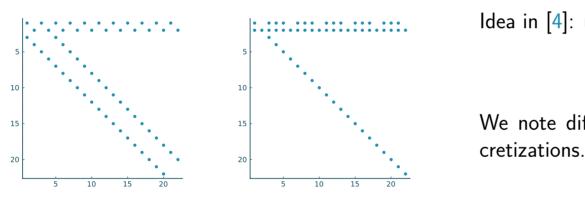
Particularly interesting choices of basis are (appropriately shifted) Legendre polynomials (P_n^*) and Chebyshev polynomials of the first (T_n^*) or second (U_n^*) kind.

Properties

Theorem

The Lanczos tau method, corresponds to pseudospectral collocation with the nodes $\theta_0, \ldots, \theta_{N-1}$ equal to the zeroes of ϕ_N , and $\theta_N = 0$.

Lanczos tau methods naturally lead to sparse, self nesting discretizations. We can for instance recover the infinite-Arnoldi discretization [3], which we now see to be an ultraspherical method [5]



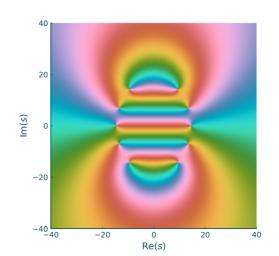
In the frequency domain

Proposition

The transfer function of the approximation is given by $H_N(s) = C(sI_n - A_0 - A_1r_N(s, -\tau))^{-1}B$, where

$$r_N(s,\theta) = \frac{\sum_{k=0}^{N} \phi_N^{(N-k)}(\theta) \, s^k}{\sum_{k=0}^{N} \phi_N^{(N-k)}(0) \, s^k}.$$

For example, the phase for N = 5 and $\phi_N = P_N^*$:



Theorem

When using a Legendre basis ($\phi_n = P_n^*$), the rational function $s \mapsto r_N(s, -\tau)$ is an (N, N) Padé approximant of $s \mapsto e^{-\tau s}$.

Proposition

The above algebraic Lyapunov equation applied to a Lanczos tau discretization can be interpreted as a differential equation describing a bivariate matrix-polynomial.

Definition

The bas

 ϕ_k

Proposition

For a symmetric basis, we have

$\|H\|$

Application: the H^2 -norm

In robust control and model order reduction, one is interested in the following system norm:

$$_{H^2} = \sup_{0 < \alpha < \infty} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \|H(\alpha + i\beta)\|_F^2 \,\mathrm{d}\beta \right)^{\frac{1}{2}}.$$

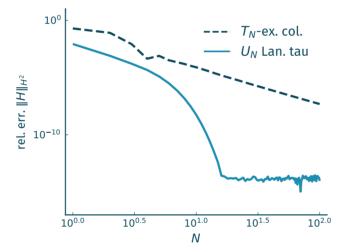
For a stable delay-free system, i.e. $A_1 = \mathbf{0}$, we have

$$\|H\|_{H^2} = \sqrt{\operatorname{tr}(CVC^T)}, \quad \text{with} \\ A_0V + VA_0^T = -BB^T.$$

Idea in [4]: use this method to approximate

$$\|H\|_{H^2} \approx \|H_N\|_{H^2}$$

We note different convergence rates for different dis-



No proof as of yet, but there are two main hints:

sis
$$\{\phi_k\}_{k=0}^N$$
 is symmetric iff

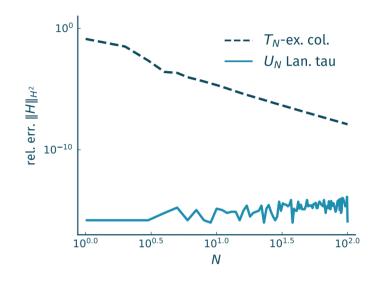
$$\nabla_k(- au- heta)=(-1)^k\phi_k(heta),\quad orall heta\in[- au,0]$$

$$|r_N(i\omega, -\tau)| = 1 = |e^{-\tau i\omega}|, \quad \forall \omega \in \mathbb{R}.$$

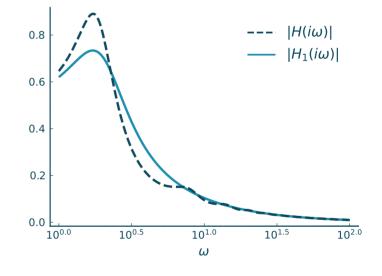
A case of super convergence

Proposition

For $A_0 = A_1 = a < 0$, discretized using a symmetric basis, we have $||H_N||_{H^2} = ||H||_{H^2}$ for $N \ge 1$.



This result holds, even though the transfer functions do not match.



Read full preprint on the arXiv

References

- [1] Breda, D., Maset, S., & Vermiglio, R. 2005, SIAM J Sci Comput, 27, 482.
- [2] Ito, K., & Teglas, R. 1986, SIAM J Control Optim, 24, 737.
- [3] Jarlebring, E., Meerbergen, K., & Michiels, W. 2010, SIAM J Sci Comput, 32, 3278.
- [4] Jarlebring, E., Vanbiervliet, J., & Michiels, W. 2011, IEEE Trans Automat Contr. 56, 814.
- [5] Olver, S., & Townsend, A. 2013, SIAM Rev, 55, 462.